Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mech Behav Biomed Mater ; 151: 106359, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38181569

RESUMO

The paper concerns the numerical design of novel three-dimensional titanium scaffolds with complex open-porous structures and desired mechanical properties for the Powder Bed Fusion using Laser Beam (PBF-LB). The 60 structures with a broad range of porosity (38-78%), strut diameters (0.70-1.15 mm), and coefficients of pore volume variation, CV(Vp), 0.35-5.35, were designed using the Laguerre-Voronoi tessellations (LVT). Their Young's moduli and Poisson's ratios were calculated using Finite Element Model (FEM) simulations. The experimental verification was performed on the representative designs additively manufactured (AM) from commercially pure titanium (CP Ti) which, after chemical polishing, were subjected to uniaxial compression tests. Scanning Electron Microscopy (SEM) observations and microtomography (µ-CT) confirmed the removal of the support structures and unmelted powder particles. PBF-LB structures after chemical polishing were in close agreement with the CAD models' dimensions having 4-12% more volume. The computational and experimental results show that elastic properties were predicted in very close agreement for the low CV(Vp), and with even 30-40% discrepancies for CV(Vp) higher than 4.0, mainly due to PBF-LB scaffold architecture drawbacks rather than CAD inaccuracy. Our research demonstrates the possibility of designing the open-porous scaffolds with pore volume diversity and tuning their elastic properties for biomedical applications.


Assuntos
Próteses e Implantes , Titânio , Porosidade , Titânio/química , Pós , Lasers
2.
Acta Biomater ; 173: 51-65, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37972883

RESUMO

It is well documented that overly stiff skeletal replacement and fixation devices may fail and require revision surgery. Recent attempts to better support healing and sustain healed bone have looked at stiffness-matching of these devices to the desired role of limiting the stress on fractured or engrafted bone to compressive loads and, after the reconstructed bone has healed, to ensure that reconstructive medical devices (implants) interrupt the normal loading pattern as little as possible. The mechanical performance of these devices can be optimized by adjusting their location, integration/fastening, material(s), geometry (external and internal), and surface properties. This review highlights recent research that focuses on the optimal design of skeletal reconstruction devices to perform during and after healing as the mechanical regime changes. Previous studies have considered auxetic materials, homogeneous or gradient (i.e., adaptive) porosity, surface modification to enhance device/bone integration, and choosing the device's attachment location to ensure good osseointegration and resilient load transduction. By combining some or all of these factors, device designers work hard to avoid problems brought about by unsustainable stress shielding or stress concentrations as a means of creating sustainable stress-strain relationships that best repair and sustain a surgically reconstructed skeletal site. STATEMENT OF SIGNIFICANCE: Although standard-of-care skeletal reconstruction devices will usually allow normal healing and improved comfort for the patient during normal activities, there may be significant disadvantages during long-term use. Stress shielding and stress concentration are amongst the most common causes of failure of a metallic device. This review highlights recent developments in devices for skeletal reconstruction that match the stiffness, while not interrupting the normal loading pattern of a healthy bone, and help to combat stress shielding and stress concentration. This review summarises various approaches to achieve stiffness-matching: application of materials with modulus close to that of the bone; adaptation of geometry with pre-defined mechanical properties; and/or surface modification that ensures good integration and proper load transfer to the bone.


Assuntos
Fraturas Ósseas , Humanos , Próteses e Implantes , Osseointegração , Porosidade , Falha de Equipamento , Estresse Mecânico
3.
Materials (Basel) ; 15(9)2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-35591638

RESUMO

The use of elemental metallic powders and in situ alloying in additive manufacturing (AM) is of industrial relevance as it offers the required flexibility to tailor the batch powder composition. This solution has been applied to the AM manufacturing of nickel-titanium (NiTi) shape memory alloy components. In this work, we show that laser powder bed fusion (LPBF) can be used to create a Ni55.7Ti44.3 alloyed component, but that the chemical composition of the build has a large heterogeneity. To solve this problem three different annealing heat treatments were designed, and the resulting porosity, microstructural homogeneity, and phase formation was investigated. The heat treatments were found to improve the alloy's chemical and phase homogeneity, but the brittle NiTi2 phase was found to be stabilized by the 0.54 wt.% of oxygen present in all fabricated samples. As a consequence, a Ni2Ti4O phase was formed and was confirmed by transmission electron microscopy (TEM) observation. This study showed that pore formation in in situ alloyed NiTi can be controlled via heat treatment. Moreover, we have shown that the two-step heat treatment is a promising method to homogenise the chemical and phase composition of in situ alloyed NiTi powder fabricated by LPBF.

4.
3D Print Addit Manuf ; 9(4): 269-277, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36660233

RESUMO

Nickel-titanium (NiTi) alloys have shown promise for a variety of biomedical applications because of their unique properties of shape memory, superelasticity, and low modulus of elasticity (Young's modulus). Nevertheless, NiTi bulk components cannot be easily machined (e.g., CNC, rolling, grinding, casting, or press molding) due to their thermomechanical sensitivity as well as inherent superelasticity and shape memory. Thus, powder bed fusion (PBF) additive manufacturing has been used to successfully fabricate NiTi medical devices that match the geometric and mechanical needs of a particular patient's condition. However, NiTi PBF fabrication leaves unmelted particles from the source powder adhered to external surfaces, which cause minor dimensional inaccuracy, increase the risk of mechanical failure, and once loose, may irritate or inflame surrounding tissues. Therefore, there is a need to develop a chemical polishing (cleaning) technique to remove unmelted powder from the surfaces of PBF-fabricated implants, especially from inner surfaces that are difficult to access with mechanical polishing tools. This technique is especially useful for highly porous devices printed at high resolution. In this study, a chemical polishing method utilizing HF/HNO3 solution was used to remove loosely attached (i.e., unmelted) powder particles from surfaces of porous, skeletal fixation plates manufactured by PBF AM. It was observed that 7 min of polishing in an HF/HNO3 solution comprising 7.5 HF: 50 HNO3: 42.5 H2O enabled successful removal of all relatively loose and unmelted powder particles. A microcomputed tomography study examination found that the volumetric accuracy of the polished skeletal fixation plates was ±10% compared with the computer-aided design (CAD) model from which it was rendered. This postprocessing chemical polishing protocol is also likely to be useful for removing loose powder, while maintaining CAD model accuracy and mechanical stability for other complexly shaped, porous, three-dimensional (3D), printed NiTi devices.

5.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948005

RESUMO

In this work, NiTi alloy parts were fabricated using laser powder bed fusion (LBPF) from pre-alloyed NiTi powder and in situ alloyed pure Ni and Ti powders. Comparative research on the corrosive and biological properties of both studied materials was performed. Electrochemical corrosion tests were carried out in phosphate buffered saline at 37 °C, and the degradation rate of the materials was described based on Ni ion release measurements. Cytotoxicity, bacterial growth, and adhesion to the surface of the fabricated coupons were evaluated using L929 cells and spherical Escherichia coli (E. coli) bacteria, respectively. The in situ alloyed NiTi parts exhibit slightly lower corrosion resistance in phosphate buffered saline solution than pre-alloyed NiTi. Moreover, the passive layer formed on in situ alloyed NiTi is weaker than the one formed on the NiTi fabricated from pre-alloyed NiTi powder. Furthermore, in situ alloyed NiTi and NiTi made from pre-alloyed powders have comparable cytotoxicity and biological properties. Overall, the research has shown that nitinol sintered using in situ alloyed pure Ni and Ti is potentially useful for biomedical applications.


Assuntos
Ligas/farmacologia , Escherichia coli/fisiologia , Níquel/química , Titânio/química , Ligas/química , Animais , Aderência Bacteriana/efeitos dos fármacos , Linhagem Celular , Corrosão , Escherichia coli/efeitos dos fármacos , Teste de Materiais , Camundongos , Fosfatos/química , Pós , Propriedades de Superfície
6.
Antibiotics (Basel) ; 10(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34438969

RESUMO

Dental implants are, nowadays, established surgical devices for the restoration of lost teeth. Considered as an alternative for traditional prosthetic appliances, dental implants surpass them in reliability and patient feedback. Local drug delivery around the implants promotes osseointegration and reduces peri-implantitis. However, there are currently no methods of a multiple, precise topical administration of drugs to the implant area. Engineering coatings on the implants, drug application on carriers during implantation, or gingival pockets do not meet all requirements of dental surgeons. Therefore, there is a need to create porous implants and other medical devices that will allow a multiple drug delivery at a controlled dose and release profile without traumatic treatment. Due to the growing demand for the use of biologically active agents to support dental implant treatment at its various stages (implant placement, long-term use of dental superstructures, treatment of the peri-implant conditions) and due to the proven effectiveness of the topical application of pharmacological biologically active agents to the implant area, the authors would like to present a review and show the methods and devices that can be used by clinicians for local drug administration to facilitate dental implant treatment. Our review concludes that there is a need for research in the field of inventions such as new medical devices or implants with gradient solid-porous structures. These devices, in the future, will enable to perform repeatable, controllable, atraumatic, and repeatable injections of active factors that may affect the improvement of osteointegration and the longer survival of implants, as well as the treatment of peri-implantitis.

7.
Sci Rep ; 9(1): 19777, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875023

RESUMO

Diatom frustules, with their diverse three-dimensional regular silica structures and nano- to micrometer dimensions, represent perfect model systems for biomimetic fabrication of materials and devices. The structure of a frustule of the diatom Didymosphenia geminata was nondestructively visualized using nano X-ray computed tomography (XCT) and transferred into a CAD file for the first time. Subsequently, this CAD file was used as the input for an engineered object, which was manufactured by applying an additive manufacturing technique (3D Selective Laser Melting, SLM) and using titanium powder. The self-similarity of the natural and the engineered objects was verified using nano and micro XCT. The biomimetic approach described in this paper is a proof-of-concept for future developments in the scaling-up of manufacturing based on special properties of microorganisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...